The reason IPv6 was originally added to the DOCSIS specs, over 20 years ago, is because Comcast literally exhausted all RFC1918 addresses on their modem management networks.
My favourite feature of IPv6 is networks, and hosts therein, can have multiple prefixes and addresses as a core function. I use it to expose local functions on only ULA addresses, but provide locked down public access when and where needed. Access separation is handled at the IP stack, with IPv4 it’s expected to be handled by a firewall or equivalent.
My favorite feature of IPv6 is that there are so many addresses available. Every single IPv4 address right now could have its own entire IPv4 range of addresses in IPv6. It’s mind-boggling huge.
The reason IPv6 was originally added to the DOCSIS specs, over 20 years ago, is because Comcast literally exhausted all RFC1918 addresses on their modem management networks.
My favourite feature of IPv6 is networks, and hosts therein, can have multiple prefixes and addresses as a core function. I use it to expose local functions on only ULA addresses, but provide locked down public access when and where needed. Access separation is handled at the IP stack, with IPv4 it’s expected to be handled by a firewall or equivalent.
My favorite feature of IPv6 is that there are so many addresses available. Every single IPv4 address right now could have its own entire IPv4 range of addresses in IPv6. It’s mind-boggling huge.
I understand some of these words!
They kept talking it was because address exaustion, and IANA sold all the remaining blocks they had…
I tested it at the time. Ran nmap ping scan across a block all night with zero results. IANA sold the internet